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INTRODUCTION

Currently many problems of fluid dynamics are being attacked by finite difference
tachniques. In the numerical solution of any given problem, several questions are raised
concerning the accuracy or quality of the computed solution. Unfortunately too few of
these questions have answers. Accuracy depends on the order of accuracy of the numerical
method (consistency), numerical stability, matching of both the numerical and physical
domains of dependence (to be discussed herein), and on simulating numerically all of the
physicall}’ significant processes in the flow field. In addition to accuracy, the numerical
analyst is also concerned with obtaining the solution as efficiently as possible. The
purpose of this paper is to examine the numerical behavior of an efficient Lax-Wendroff
difference technique of second order accuracy now being used to solve a wide range of
problems in fluid dynamics (MacCormack. 1969; Kutler, 1969). In particular, this
technique will be modified to meet the specific demands required for the solution of the
interaction of a shock wave with a laminar boundary layer. The modified techniques,
obtained through the concept of splitting, may however themselves have a much wider
application in the solution of problems in fluid dymamics.

GENERAL NUMERICAL CONSIDERATIONS

The time-dependent Navier-Stokes equations, in two dimensions. neglecting body forces

and heat sources, may be written in vector form as
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for density p, x and ¥ velocity components u and v, viscosity coefficients A and p. total
energy per unit volume e, specific internal energy €. coefficient of heat conductivity k,
and temperature T. Finally, the pressure p is related to € and p by an equation of state,
ple.p). where € = e/p - (u2 + v2)/2.

A two-step difference method of second order accuracy (MacCormack, 1969) devised to
solve Eq. (1) can be defined by
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ij =2V v Ui - Ax(Fi,j Fi-m) Ay (Gm - Gx,j—l)

where F?’. and G?’j equal F(Ulil’j) and G(U?j). The subscripts refer to a spacial mesh of
POints (xi,yj) with spacing Ax and Ay, and the superscripts refer to times t = nAt where At
is the time increment that the solution is advanged during each cycle of Egs. (2). The

method first obtains an approximate value, Ug”l' . at each point using two forward differences
to approximate the two spacial derivatives. The approximate solution is then used in the
Second equation, using two backward differences, to obtain the new accepted value U?; . The
ghove difference method is only one of four methods of essentially the same form. For
txample, if instead of first using two forward spacial differences and then two backward
dffferences. the reverse procedure could be followed or one forward and one backward
difference could be followed by corresponding backward and forward differences. The
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variant defined by Egs. (2) will be used here only to illustrate the numerical behavior COmmg,
to all four and it should be used to solve Eq. (1) with caution, as will become clear later j;

PUENUMSUNIENI . P

the section on accuracy and stability. sanst
For the analysis of the numerical behavior, in particular, stability. of the difference
equations, only the inviscid non-heat-conducting equations will be treated in detail. Boty the The it
viscous and heat conduction terms, physically and also numerically (if their magnitudes iy " pransic
! the differenced equations are not too great). tend to damp out the high frequency Componey;g
of the solution, which are normally the ones which cause numerical instability. Thus, it ig
t expected that the inclusion of these terms in the analysis would only enhance stability.
: Domain of Numerical Dej;endence . i
: To advance the solution in time by At at one mesh point (xj,yj), using Egs. (2), Tequireg
; i knowledge of only seven neighboring points. This "star" of points is illustrated in Fig. 1, I
} R | The points marked A are primary in that information at these points more strongly modifieg } o
!. ‘ the solution at (x;,y;) during time At than does that at points B. The three other variants of | cas
'; g Eqgs. (2) have simildr stars; the only differences are in the locations of the points B. The %dlm:
t seven points define the numerical domain of dependence. The first requirement of any ‘ made N
f method is that its numerical domain include the physical domain of dependence. Clearly, if g w 93
this is violated. the numerical scheme does not have in hand all the data necessary to ! "o -
i advance the solution in time. On the other hand, there are two reasons why the numerical ! foans ¢
l domain should not be much larger than the physical domain. First, to obtain an accurate ' condm‘
! numerical solution at a given point which '""sees"” much more data with time than the true 1 i _?1'
L solution, a rather severe demand is made of the numerical method to ignore or give little aot -
weight to the extraneous data. Second, the computation time spent in processing this vecLo.r‘
unneeded data is costly. If the more restrictive domain, the primary domain defined by the ren=ra
points A (cross-hatched in Fig. 1) is taken as the effective numerical domain, the ahov. I
= requirement is met if :ltmeilxl
. the dl.
‘ t At = ('uAx + Ivi/Ay + c/1/Ax2 + 1/Ay2 )1 i2) functior
where c¢ is the local adiabatic speed of sound. This condition is usually called the Couran:-
Friedrich-Lewy (C.F.L.) condition.
! Accuracy and Stability
i The numerical stability of methods of this type, namely. those of the Lax-Wendroff !
) class, cannot presently be completely analyzed in the general nonlinear form. The most )
l successful attempt to date is to first linearize the set of differential Egs. (1) and then to
study the amplification of Fourier components of the solution by the difference method
] { applied to the linearized set. The new set is then L
; é % + JF—?E + JGZ—;J- =0 )
{ ! where Jp and J; are the Jacobian matrices of F and G with respect to U and are considered ltl
1 to be constant. This set of equations approximates Egs. (1) locally, and difference methods the e1‘g~
! found to be unstable for it can be expected to be unstable for the general nonlinear case. Two | power 1
' conditions inherent in such an analysis are: (a) the boundary conditions have no effect on ! contain
1 : stability, and (b) the exact solution to Eq. (1) is smooth. The latter condition allows the similar
} ' matrices Jy and Jg; to be treated as constants (locally). !
; The amplification matrix of the difference Eqs. (2) applied to Eqgs. (4) for a single Fourief t
component of the solution, W(t)exp(i(k,x+ko¥)], becomes X ‘:ct:ll: ‘
S181%
J J : . . . bounda
G =1-iAt (A—i sing + ﬁ sinr,> - % Atzgfi 1 - elf)+ i—? (1-e'in)><i—i {1 - eld) %(1 - e"’) : b@,,w;
5
where £ = kle andn = kgAy. For{ andn<<l1,§ = exp[-iAt(JFﬁ/Ax + JGn/Ay)] modulo - ;f)e ﬂ»
terms of third order in £ andn. The exact solution of Egs. (4) for the above Fourier compen

component is exp[-it(k;Jp + ko Jg)lexplifkyx+ k,y)]W(0). Hence, the exact amplification of s
the solution from t =0 to t = At is exp[-it(kyJp + koJg)] which equals ¢ modulo terms o i ,est
third order in £ and . Thus the d:fference method is shown to be of second order accuracy: . “The

e+ = e o e = £ st i
e anland
¥ T . - ,
—————
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In the limiting process At — 0. stability is assured if all the eigenvalues. A;. of &

i the von Neumann condition
sabisty Al = 1 + O(At) (5)
values of § are invariant under a similarity transformlation. There exists a
ation, S, such that ¢’ = S71¢S =1 + K - K* - 2K*K,* where

K = (At/2)((1 - e1€)Aa/8x + (1 - €M) B/2y)

The eigen
trans form.

ucdO voOco
cu?do _f{ovooO
A=loouol®B=lcovo
000 u 000 v

It can be shown that iw.g’ w) 2=1+4 llKw 1% where w is any unit' vector, (W,G’ w) is
inner product of w with ¢’ w and |IKw||=(Kw,Kw)1/2; hence the eigenvalues of ¢ can be
thede to satisfy (5) as &t — 0 if At3/Ax% is held fixed. It can be shown that the bound on
I'n(:, ¢'w) 12 is a least upper bound (i.e., the value is achieved by (w.£’ w)) by cotisidering
‘,:;(Ay/A"( w E=-n andw=(1,000T Then |(w,g'W)|Z=1+ 4(s‘11'1 gétu/Ax) . The ~
ixing of At /Ax4 as At — 0 is much more restrictive than the condition u?lpos.ed bv the C.¥'.L.
flxrluiition (Eq. (3)). It is a necessary condition near the unfavorable velocity directions
$0= _uAv/Ax. The other three variants also have unfavorable directions: how'ever they are
not all the same. The amplification matrix of each has in gengral different eigenvalues apd
vectors for each Fourier component of the solution; hence a single component would not in
general maximize |(w.gw)! for each variant.
It was conjectured that if the four variants followed one another cyclically duri‘n>g the

mumerical calculation. the condition on At would be close to that of the C.F'._L. condition.
The difference method is then in terms of the permutted subscripts ii and jj and the mod
function?

ii = mod (n.2) l

jj = mod (n - ii.4)/2

T+l At At
R I R B ) el CH TR R
ii = mod (ii + 1.2) (6)
ji = mod (jj + 1,2)

o1 1 mgm{{ﬁ_ﬁn_ﬂ_ﬁ)
U ‘glUIﬁj +Uj5 - Ax(Fii,j - Fii—l,j) ay Gijj - Gijj-1

It has not yet been possible to assess the validity of the conjecture analytically. Instead
the eigenvalue least upper bound for several flow directions will be approximated using a
power method and a simple numerical test problem. Consider a region of uniform flow

containing a square array of mesh points, U(i),' = constant,i,j = 1,2, . . . ,N. Using the
similarity transformation S on Eq. (4), we have
92, %2, p%2 . e
ot ox 3y

where Z=5"1U. The exact solution is Z(t) = S"1U(t) = S~1U° = Z°. Let I denote the numer-
ical operator which obtains U%*lfrom U according to Egs. (6) and also where the inflow
boundary point values are fixed and the outflow boundary point values are calculated using
backward or, more precisely, upstream differencing. In the absence of roundoff error,

since the technique defined by Eqs. (6) is consistent (of second order), ZM*1 = Lz = (1)"Z°
=2°% The numerical solution is exact. Now let 6° be a perturbation to Z° rich in Fourier
components which can be supported by the mesh. With Z° + 6° as an initial condition, by
TThe superse

he superscripts * and T denote complex conjugate and transpose.

The function mod (x.y) is defined as x - [x/y]y where [x/y] is the integral part of x/y.
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linearity, both the set of differential Eqs. (7) and the difference equations reduce to

88 95 96

2+ A+ B==0 and 50+l = 10 = ()40
at ax

oy

As earlier in this section. the magnitude of the exact amplification of each component of g
is unity. On the other hand, if all the eigenvalues of the amphﬁcatlon matrix €1, associateq
with the operator L are less than or equal to one in magnitude || 601 =11 6°11; otherwise
1 n+11| will grow exponentially with n. The numerical results for Mach number 2 0 a
mesh of 20 x 20 points, &0, = (0,0.0,0)T for i # 10 and j # 10 and 610 10=0,2.0,1)T are
contained in Fig. 2 for Ay Ax = 1 and for Ay/Ax = 0.1 (the form of 610 10 ig explained in
footnote 3). Each point of the figures represents the resuit of a numerical solution, 81,

and is plotted in polar coordinates with cAt/Ax as the radial coordinate and arctan v/u as
the angular coordinate. Each solution was advanced from 40 to 400 time steps until it coulq
be determined if |!6"i! remained bounded by unity (open symbols) or grew exponentially
(closed symbols). The closed curve of each figure represents the C.F.L. condition, Eq. (3),
with the equality sign. These results indicate that the C.F.L. condition is a sufficient
condition for the stability of the difference Eqs. (6). Also, Fig. 2(a) shows that for the
difference Eqs. (2). the associated amplification matrix has eigenvalues greater than one in
magnitude for the velocity direct.ons 3n/4 and 7x/4. However, it was observed that at
arctan v/u =0, /4, 7/2, 7. 57/4 and 37/2 the associated eigenvalues of Egs. (2) were
bounded by unity if cAt/Ax satisfied the C.F.L. condition.
A Nonlinear Instability

Difference schemes shown to be stable by linear analysis may still experience numerical
difficulties in the solution of nonlinear problems. Normally they appear where linear theory
does not apply, in particular in regions where the exact solution is not smooth. However,
even in smooth regions difficulties can occur. To demonstrate this, consider the equation

2
% + 9%':— = 0, where p is constant, and the finite difference approximation to it,

n+l

up - o= uf - (At/AX)KPUZ)?u/Q - (9“2)?-1/2

2 2
where (pu2>?+l /2 may be pu?+l (forward difference), or pugl {backward difference) or
2

(pu‘i1 + pul +1 /2 (central difference). Viewing the mesh as composed of cells allows the
following interpretation of the difference equation. The change in pu; during time At is

equal to the difference in momentum transported across the cell face located at x = (i + 1/2)Ax
from that at x = (i - 1/2)Ax. Letus consider only the effect of transport across the cell face
atx = (i + 1/2)Ax and suppose that both u and u?_,_l are nonzero. There are four cases to

consider: (a) uj 4‘1<0 () ul u >0 (¢) ul >0, u1+1<0 and (d) uf <o, “1+1>0

For case (a), cell i containing negative momentum receives - (At/Ax)(pu )1+1 /2 momentum
per unit volume from cell i + 1, the ""donor cell." The magnitude of momentum of the
receiving cell is increased while that of the donor cell is decreased. Thus the difference
equation is consistent with the physics of the flow at the cell face. The reduction in magnitude
of the donor cell is a stabilizing influence. Case (b) is essentially the same as case (a) with
the roles of cells i and i + 1 reversed. In case (c¢) both cells are donors and because pui1 >0
and pu1 +1 <0, the magnitudes of momentum of bothcells arereduced, again a stabilizing
process. Case (d) exhibits an entirely dlfferent behavior. Both cells are receivers, increase
their momentum magnitude by (At/ Ax)(pu )l +1/¢ during time At and will again satisfy the
requirements for case (d) for the next time step. Thus, this process is self-aggravating, 2
destabilizing mﬂuence The difficulty arises because the difference equation loses informa-
tion about the sign of “x+l through squaring. For cell i the difference equation cannot
distinguish case (d) from case (a) or for cell i + 1 case (d) from case (b). Thus the difference

3The fourth equation of Egs. (7) is not coupled to the first three; hence it needs to be directly

perturbed. The first three are coupled; hence a perturbation to any one will perturb the
other two.
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equation can violate the physics of the flow by allowing a quantity of negative momentum to
be transported out of a cell, possibly containirg only positive momentum, through a surface
at which u vanishes. This numerical difficulty, when encountered can be remedied by
appealing to the physics of the ﬂow.nThe fluid velocity at the cgll fac.e can be approximated
to second order accuracy by (u‘i1 + ui,,_l)/zrl and if the termn(pu )i+1/2 ?s replaced in the
difference equation by {(uf + ufl1)/2Hpw)]y1 /2 where (pu)iy /g is defined as before, the o.rc?er
of accuracy of the difference equation is unchanged.zThe modification reduces thg destab}hz—
ing influence because {(uf' +uf;)/2Hpw)y; /9 < (pu }+1/2 and also is more consistent with
the physics of the flow. This modification is employed when the conditions of case (d) occur
by the methods described in this paper.
SPECIFIC NUMERICAL CONSIDERATIONS

In this section the ideas and techniques of the previous section will be tailored to meet

the specific needs for the solution of the interaction of a shock wave with a laminar boundary

. layer on a flat plate sketched in Fig. 3. In the process some ideas are developed which may

pe very significant in the numerical solution of fluid dynamic problems in general.

As in any problem, the primary necessity is to choose Ax and Ay small enough so that:
{1) good spatial resolution of the features in the flow field is attained; and (2) all the signifi-
cant physical processes, for example, viscous shear, are exhibited without being largely
influenced by truncation error. Unfortunately, it is impossible without knowing the exact
solution and its derivatives to choose Ax and Ay so that these requirements are sure to be
achieved.

This particular flow problem has characteristic lengths normal to the plate (y-direction),
houndary layer thickness, and along the plate (x-direction), the distance from the leading
edge to the incident shock, x,. differing by several orders of magnitude. One approach to
meet the above needs is to choose Ax and Ay so that all of the significant terms of the set of
differential equations are all of nearly the same magnitude in the set of difference equations.
For example, consider the transport term (8pvu/dy) and the viscous stress term

a2

Tayaz of the x-direction momentum equation.?

If we linearize and difference them, we

havesg%y (“j+1 - “j—l) and (,J./Ayz)(uj.,,l - 2uj + “j-l)~ Equating the coefficients of these

difference terms results in pvAy/u = 2, a mesh Reynolds number, Repy. of two. Comparing
this number with the free-stream Reynolds number, Rexs, we obtain the estimate

Reay up 2upXg
Ay & Re, v S ¥ vRe @)
Xs Xs

where u, is the free-stream velocity and it is assumed that the kinematic viscosity, p/p,
varies little from that of the free stream. Now estimating Ax, we, as before, linearize and
<'3pu2 dpvu

dy

difference the terms and

Equating the coefficients of the difference terms yields

u
ax = Ay 9
Inusing Eqs. (8) and (9) to calculate mesh spacing in a region in which viscous phenomena
are important, velocities u and v characteristic of the region will also have to be estimated.
It is probable that the "equal in magnitude' of the difference coefficients could be relaxed to
"of the same order of magnitude" without the viscous terms being swamped by truncation

¥The choice of the x-direction momentum equation is consistent with the usual boundary layer
analysis. The y-direction momentum equation normally reduces in the boundary layer

ap=0.

equations to

5A central difference approximation is used here because the use of one forward and one
backward difference by the techniques of this paper during each time step is effectively that
of using a central difference.
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error. For this reason and the assumption about kinematic viscosity Egs. (8) and (9) are
believed to be conservative. Nevertheless, in the boundary layer region Ay is expected to g
much smaller than Ax.

At moderate Mach numbers, if Ay <« Ax, the calculation for At using the C.F.L. Eq. 3) 15
dominated by small y-direction mesh spacing. If Eqs. (6) are used to advance the solution,
during each At, the numerical domain increases in the x and y directions by Ax and Ay. The
physical domain increases in the y-direction by ('vi + c)At = Ay. However, in the x-directjq,
the increase is only (lu! + ¢)At «<Ax. Thus the numerical domain is much larger than the
physical domain. However, it is possible to modify Eqgs. (6) using the concept of splitting 5
that this difficulty is avoided.

Splitting

The concept of splitting is originally due to Peaceman and Rachford (1955) and is com-
monly known as the method of alternating directions. Since then. it has been widely used
(Yanenko, 1969) to transform complex operators into a sequence of simpler ones. This
concept will now be used to reduce the set of two dimensional Eqgs. (6) into two sets of one-
dimensional equations while mainteining second order accuracy.

Egs. (6) can be split as follows:

ii = mod (n,?2)

i

ji = mod (n - ii,4)/2 ]
: |
n+1/2 _ ;i At/ .n n
Vid T = U iy )G - Gigge (
jj = mod (jj + 1.2)
ntl/2 _ 1) .n _ ntl/2 At_(m m)
Uigmm =g Uy T U - Ay Gy - Gl (19)

n+l _ gnt1/2 _ At (on+l/2 pn+l/2
Uij = Uiy - & Fii " - Fiiclg

il = mod (ii +1.2)

J

WSRIEY O v U B es S e g

Uij = 2|Ui,j * Ui - ax\Fiig - Fii-14 l

Letting Ly denote the operator which obtains UP*1/2 from U™ and L. that which obtains
U™ from UR*1/2 e have schematically UL = LyL,U™ It can be shown that because of

the noncommutativity of L, and Ly that the numerical method L.xLy is only of first order.

However, it will now be shown that the method defined by U2 = LyLyLyLyU" is of second
order accuracy. i

et + o i it

The amplification matrix associated with Lyis gy =1- i(AtJp/Ax) sin £ - (At JF/Ax)2
(1 - cos £). The eigenvalues of Jp are the same as A, u, u, u # ¢ and those of Gy are less
than or equal to unity in magnitude if At = At, = Ax/(lul +¢). Similarly, ¢, =1 ‘
- i(At JG/Ay) sinn - (AtJG/Ay)2(1 - cos 1) and its eigenvalues are less than or equal to one
in magnitude if At = Aty = Ay/(Ivl +¢). Thus Egs. (10) are stable if At < min (Aty. At).
since each component operator is then stable. Now for £, n<« 1, G.GxGx Gy = '
expl-124at(J gt/ ax -i-JG‘n/Au)]. the exact amplification of the solution during 2At, modulo terms

of third order in £ and n. The extension to three dimensions, LZI‘VLXLXLyLZ’ is simple.

Now suppose that Ay << Ax so that Aty/ Aty «<1. Let Lp(at,) be L, as before with
At = Aty, Ly (At,) be similarly defined and M be the smallest even integer greater than

Atx/Aty. Then the following method of second order accuracy advances the numerical .
solution At, in time. ’

URh = (Lyan, M)M/2 Loang @ytanamM/2 g

(In a chain of time steps this operator is . . . :I}ILngle . ...) The advantages of this split
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technique are: (a) For M time step advances in the ""y-direction"” vgxl_‘c‘ere At,, is at least as
large as the maximum allowed by Eq. (3), the "x-direction'" terms, B+ ee only be computed
once, as compared with M times with Egs. (6) and (b) the physical and numerical domains of
dependence are matched more closely, since during time Aty both domains increase by

(lul + c)at, = Ax in the x-direction and in the y-direction the physical domain increases by
(M +c)at, = (vl + c)MaAty, = MAy which is the numerical domain increase. The main
disadvantage for large M is that the solution is advanced in the y-direction many times
nearly completely independent of ihe nature of the solution in the x-direction. Although this
small amount of coupling becomes unimportant in the limit as Ax, Ay — 0, at practical
choices of Ax and Ay this need not be the case.” This difficulty c%ri_: be overcome while
retaining the advantages of splitting as follows. First, the term will be cag_clu)gted at

time (n + 1/2)Aty to second order accuracy by Eqs. (6) using At =’th. ?)n
—— —— x e
1{zn n - gl _ po+l ) . 1] .
§(Fii,j - Fii-l,j Fii.j Fu_le /ax. Let ny(m, At) be the operator defired by
jj = mod (m.2)
m+1 ™ g L) pi] +1/2 \
e i rn¢ M —AL(}D‘ M Gn‘ M) Atﬂ n+1/
Uiy RN Ay L) i3j-1 ox ), .
J
jj = mod (ji ~1.2) >("—1)
m-1 m m-l m-1 _m-l i /
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Then the solution U™ is advaj})ced in time by At, by the following sequence:

n+1l/2 M-1 n
(1) Calculate (E(—)ii oo Lyy(m. At /M) U

where 1 denotes the product. It is not difficult to show, using Taylor series expansions,
that the above technique is of second order accuracy. For stability, if we again consider the

all ii @ vl =

n+H§I’l -n+7\r% Aty n+1/2
linear case, Ui,j = ny(mfAtx/I\DUi,j = Ly(Atx/M) + EYl G Jj , where
+1/2 nt+1/2 A n+l/2
ne1/2 _ (oF\® . |<aF) ) (ar) Sine ud
Ci.j = (_3")1:3' + (AtxJG/(“MAY))l o . ™ -1 Since the magnitudes

of the eigenvalues of Ly(Atx/M) are bounded by unity, those of I,xy(m,Atx/ M) are at worst
bounded by 1 + O(At,) (von Neuman condition Eq. (3)).
NUMERICAL RESULTS

To illustrate the concepts of the previous sections numerical solutions of the two-
dimensional interaction of an obligue shock wave with a laminar boundary layer at a Mach
number of 2.0 will be presented and compared withthe experimental data of Hakkinen. Some
characteristic features of this interaction are illustrated schematically in Fig. 3. Hakkinen's
data were chosen because the boundary layer is laminar throughout the interaction region and
the experimental data include both plate surface pressure and skin friction. Two test cases,
one in which the incident shock was not strong enough to cause flow separation. and one with a
shock sufficiently strong to cause separation (Fig. 3), were solved numerically.

The computational rectangular mesh covered an area of 8.636 cm x 1.270 cm including
7.87¢ cm of plate. The boundary conditions were: (2) the upstream boundary values were
initially set for uniform flow and thereafter held fixed; (b) the values of the boundary opposite
the plate were initially set using inviscid oblique shock wave theory such that a shock of
glven strength and point of incidence on the plate would be generated and thereafter were
held fixed; (c) the downstream exit boundary values were set equal to those just upstream
after each step; and (d) for the boundary containing the plate a fictitious row of cells
together with "mirror symmetry" was employed; that is, the plate was located midway
between the row of fictitious points, denoted by j = 1, and the first interior row of points,




j =2 (located Ay/2 off the plate). The pj ;1 =pjo U1 =-U9,V17 1 2 Ty1=
and P;j1=P; 2 except for those points upstream of the plate where u, i1~ u o, Boundarv

condition (c) assumes uniform flow at the exit. This is good near the plate. Away from the
plate the flow field is supersonic and errors made at the boundary will not propagate up-
stream. By the temperature and density boundary conditions (d) the plate is treated as ap
adiabatic wall. The initial condition of the interior points is uniform flow. The Sutherlang
viscosity law for air, with A= '%y , the perfect gas equation of state, and a constant Prangp
number equal to 0.72 were used.

Unseparated Flow

For this case, the pressure ratio, pf/p0 (final (after reflection) to initial), was 1.2, the
distance from the leading edge to the incident shock, Xg, Was 4.88 cm, and the free-stream
Reynolds number, Rexs was 2.84 x 105 From Egs. (8) and (9) with v taken as v1/2 and
u/v as ul/vl. where uy and vy are the velocity components after the incident shock and
away from the plate, the estimates Ax =0.0848 cm and Ay =0.0024 cm for the boundary
layer region are obtained as a reference.

An initial calculation with a mesh of 34 x 12 cells, Ax =0.254 cm, Ay = 0.127 cm (moxe
than 50 times larger than the estimate), was made using Egs. (6) with At = 0.9, the mazximum
allowed by Eq. (3) (u=uy. v=v; and ¢ = ¢;) and allowed to run 128 time steps when there
was little change occurring in the flow field (approximately 5 minutes in machine time on the
IBM 360/67). Figure 4 compares the numerical results with Hakkinen's data, where the
surface pressule is approximated by Pi,1 and the local coefficient of skin friction by
{u i 1(u1 9" 1) /ay}/ (poug/Z) The results for skin friction are in conspicuously poor
agreemént with experiment. Although the full set of Navier-Stokes equations was differenced,
the coarseness of the mesh allowed the viscous terms to be swamped by truncation and
round-off error. The numerical solution was essentially that of inviscid flow and the shock
wave angles, strengths, etc., were within a few percent of inviscid theory. The calculation
was then repeated; this time with a mesh of 34 x 32 cells containing a fine mesh near the
plate, large enough to contain the estimated boundary layer and a coarse mesh away from
the plate (Fig. 5). In the fine mesh of 34 x 22 cells Ax = 0.254 and Ay = 0.00635 cm,
(approximately three times that estimated by Eqgs. (8) and (9), and in the coarse mesh
Ax =0.254 and Ay = 0.127 cm. The solution was advanced in time separately for each mesh.
First the fine mesh was advanced in time by Aty = 0.9 Ax/( lugl + ¢,) using Egs. (11) with
M =20. The row of cells, j = 22, was used as a boundary for the fine mesh. Data for these

points were obtained by linear interpolation between points of the inner fine mesh and outer
coarse mesh after each Atx/M time step. After the inner mesh has been advanced in time
by Aty Egs. (10) with At = At are used in second order fashion to advance the outer mesh.
During the calculation of the inner mesh transport through and stress at the boundary common
to both meshes were saved. Their net transport and stress were then used as a boundary
condition for the outer flow field. Thus, mass, momentum, and energy were rigorously
conserved within the overall mesh. The basic assumption in using this mesh is that the
viscous terms are important only in the boundary layer (although their effects are important
away from the plate as well), thus allowing the outer flow field to be treated as inviscid by
use of a coarse mesh. The numerical results for this calculation are displayed in Fig. 6.
Figure 6(a) illustrates the asymptotic convergence in time from the initial condition to
steady state of a velocity profile at x = 4.699 cm (the column of mesh points just upstream of
the shock). Figure 6(b) compares the numerical results after 256 Aty time steps (four hours
of machine time) with the experimental measurements of surface pressure and skin friction.
Figure 6(c) shows the streamlines in the boundary layer obtained from the velocity fields
using a third order interpolation subroutine and plotted on a cathode ray display tube. They
are initially 0.00953 cm apart. Also contained in the figure are u—velocity profiles at

X = 2.794, 5.080. 6.985 cm.

Separated Flow

The experimental conditions for this case were essentially the same as those for the
separated case, xg = 4.953 cm, Re, = 2.96 x 105, except the incident shock was stronger.
Pg/Py = 1.40. As before, using Egs. (8) and (9) the estimates Ax = 0.0238 and Ay = 0.00127 ¢m
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can be obtained as reference values.

Again, exactly as in the unseparated case the solution was advanced in time on a mesh
containing a fine sub mesh where Ax = 0.254 and Ay = 0.00635 (approximately ten and five
times that estimated) and a coarse sub mesh where Ax = 0.254 and Ay = 0.127 cm and
allowed to run until there was little change occurring in the flow field (320 Aty time steps).
The results are contained in Fig. 7. Although the computed separation point agrees well
with the experimental point, the length of the separated region is underpredicted and the
characteristic plateau in the experimental pressure profile is not found in the numerical
data. Two related probable causes for this are: (a) there were too few points in the
separated region (four cells) to provide good spatial resolution, and (b) Ax is more than
ten times that estimated from Eq. (9). The mesh was further refined by halving Ax. The
new mesh of 38 x 32 cell.g began 2.54 cm downstream of the leading edge and covered an
area of 4.826 x 1.270 cm*~. The new time increment At, was half that of the former and M
equalled ten. The upstream boundary condition was obtained from the previous calculation
and thereafter held fixed. The initial condition was the previous converged solution with
second order interpolation used to define values at the additional points. It was observed
that the solution on the new mesh, initially out of equilibrium. converged asymptotically
again in about 256 additional time steps. The new results are shown in Fig. 8. The
streamlines of Fig. 8(c) are initially 0.00953 cm apart and the u—velocity profiles are
located at x = 2.794, 5.080, 5.715, and 6.985 cm.

CONCLUDING REMARKS

1. Although the conditions of consistency and stability are sufficient for convergence of
the numerical solution to the exact solution for well-posed linear problems as mesh and
time increments tend to zero, there is no guarantee that this will occur in nonlinear problems.
The numerical analyst must at present be content with assuming the same behavior for the
nonlinear case. The test cases in the applications section support this. It is felt that mesh
spacings nearer those estimated by Eqgs. (3) and (9) would cause the remaining disparity
between the numerical and experimental results (i.e.. the plateau in the pressure profile of
Fig. 8) to be reduced. Nevertheless, good agreement in general has been achieved.

2. The techniques developed from the concept of splitting are expected to have much
more general application than just those with severe differences in coordinate mesh spacing.
Not only do they exhibit more flexibility to allow better matching of dependence domains,
but since min(ax/(lul +¢), Ay/(lvl + ¢)) =(lul/Ax + Ivl/Ay + cx/l/Ax.2 + 1/ay%) 1 their
time step increments can be larger than the unsplit techniques. There are however two
questions to their unrestricted use: (a) Although there is no loss in order of accuracy, are
they still less accurate for practical choice of Ax and Ay; and (b) although the solution can
proceed at larger time steps, is the computation time per step correspondingly greater also?
To partially answer these questions the calculation which produced the data contained in
Fig. 5 obtained by the unsplit Eqs. (6) was recalculated using the split Eqs. (10) for the
same simple 34 x 12 mesh. The steady-state solutions were nearly identical (Fig. 9). The
time step ratio, Aty/At, equalled 1.45 where Aty was taken as 0.94%/(lug | + ¢) and the
computation time per step ratio, tunsplit/tSpliv was 0.924. Thus for the case computed here
the computation time to advance the solution to a given time by the split technique is 0.75 that
of the unsplit technique.
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(c) Streamlines and velocity profiles.

Fig. 6. Concluded.
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Fig. 7. Numerical results for pf/p0= 1.4;

4x = 0.254 and Av = 0.00635 cm in fine
mesh, Ax = 0.254 and Ay = 0.127 cm
in coarse mesh.
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Fig. 8. Numerical results for pf/p0= 1.4;

Ax = 0.127 and Ay = 0.00635 cm in fine
mesh, 8x = 0.127 and Ay = 0.127 cm
in coarse mesh.
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Fig. 9. Comparison of pressure profiles
at y = 0.5715 cm from plate.




